CALCULUS COMPREHENSIVE EXAM

Summer 2009, Prepared by Dr. Robert Beeler and Dr. Robert Gardner July 10, 2009

N	AME STUDENT NUMBER
fac No ma	e clear and give all details . Use all symbols correctly (such as equal signs). The numbers in bold ced parentheses indicate the number of the topics covered in that problem from the Study Guide. o calculators! You may omit one problem from numbers 1 through 5 (which contain Calculus 1 aterial) and one problem from numbers 6 through 10 (which contain Calculus 2 material). Indicate nich two problems you are omitting: and
1.	(a) State the definition of the limit of a function (i.e., what does $\lim_{x\to a} f(x) = L$ mean?).
	(b) Prove that if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then $\lim_{x\to a} (f(x) + g(x)) = L + M$ (1,2)
2.	Prove that if $f(x)$ has a derivative at $x = c$, then f is continuous at $x = c$. Is the converse also true? $(4, 7)$
3.	Do each of the following (12, 18):
	(a) State the Extreme Value Theorem.
	(b) Show that the largest area rectangle of a given perimeter is in fact a square.
4.	(a) State the Fundamental Theorem of Calculus (both parts). (23)
	(b) Evaluate $\int_{1}^{e} \ln x dx$ (HINT: Use parts) and indicate with a star (*) where you have used the Fundamental Theorem of Calculus in your computations. (24, 31)
5.	(a) State the definition of partition, norm of a partition, Riemann sum, and definite integral for
	$\int_a^b f(x) dx. $ (21)
	(b) Explain the difference between a definite integral and an indefinite integral (if any). (20, 23)
6.	(a) Use the definition of $y = \tan^{-1} x$ (in terms of the tangent function) and implicit differentia-
	tion to find $y' = \frac{d}{dx} [\tan^{-1} x]$.
	(b) Evaluate $\int \frac{dx}{x^2 - 2x + 5}$. (28, 34, 35)

7. (a) Use the definition of $y = \sin^{-1} x$ (in terms of the sine function) and implicit differentiation to find $y' = \frac{d}{dx} [\sin^{-1} x]$. (35)

(b) Evaluate
$$\int \frac{dx}{\sqrt{5-4x-x^2}}$$
. (28, 34, 35)

- **8.** Do each of the following.
 - (a) State the definition of the limit of a sequence: $\lim_{n\to\infty} a_n = L$. (41)
 - (b) State the definition of the sum of a series: $\sum_{n=1}^{\infty} a_n = S$. (41)
 - (c) Determine whether the series $\sum_{n=1}^{\infty} ne^{-2n}$ is convergent or divergent. You may use any test, but you must check the hypothesis of any test you use. (45)
- **9.** Do each of the following:
 - (a) For a given x value, the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e. on what types of sets might the series converge conditionally, converge absolutely, or diverge)? (46)
 - (b) For what values of x does $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-5)^n}{5^n(n+5)}$ converge? (46)
- 10. Find a Maclaurin Series for $f(x) = e^x$ (show your work). Where does the series converge absolutely? Where does it converge conditionally? Where does it diverge? Use the series to verify that $\int e^x dx = e^x + C$. (31, 45, 46, 47)