CALCULUS COMPREHENSIVE EXAM

Spring 2017b, Prepared by Dr. Robert Gardner April 21, 2017

N. 4.2.65	C. TI	D. 100
		End Time:
Be clear and give all detail	, v	• (- •)
The numbers in bold faced pa		_
in that problem from the Stud		
phones! Use the paper provide To address not entirely acade		
room and may request to see		the test, I will wander the
taking it. You are not allowed		· ·
allowed to stop during a test	to go to the bathroom,	<u> </u>
documented medical need before		
	=	h 5 (which contain Calculus
1 material) and one problem f	_	`
2 material). Indicate which tw	% problems you are omi	tung: and
1. Do each of the following (1	·):	
(a) State the definition of mean?).	the limit of a function (i.e., what does $\lim_{x \to a} f(x) = L$
(b) Use the definition of l	limit to prove that $\lim_{x\to a} (\cdot)$	-5x + 3) = -5a + 3.
2. Do each of the following (3	3, 33):	
for the limit of a function	ì.	led the "Squeeze Theorem")
(b) Use the fact that $\sin \theta$	$\theta < \theta < \tan \theta \text{ for } \theta \in (0, \pi)$	$(\pi/2)$ to show that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} =$
1 (WARNING: This is a hold for $\theta \in (0, \pi/2)$.)	two sided limit and the	inequality is only known to
3. Do each of the following (5	5) :	
(a) State the Intermediat	te Value Theorem.	
(b) Use the Intermediate a real root (be sure to inc		e that $f(x) = x^5 - 5x - 1$ has theses).

- **4.** Do each of the following **(23, 24)**:
 - (a) State the two parts of the Fundamental Theorem of Calculus.
 - (b) Use the Fundamental Theorem of Calculus to evaluate $\int_0^1 xe^{x^2} dx$ and indicate with a star (*) where you are applying the Fundamental Theorem.

- **5.** (a) State the definition of partition, norm of a partition, Riemann sum, and definite integral for $\int_a^b f(x) dx$. (21)
 - (b) Explain the difference between a definite integral and an indefinite integral (if any). (20, 23)
- **6.** Do each of the following **(32, 37)**:
 - (a) If f is continuous on $[a, c) \cup (c, b]$ then state the definition of $\int_a^b f(x) dx$. That is, how do you integrate over a discontinuity? You may assume the usual definition for integrals of continuous functions has been established.
 - **(b)** Evaluate $\int_0^2 \frac{1}{(x-1)^2} dx$.
- 7. Do each of the following:
 - (a) Use the definition of $y = \tan^{-1} x$ (in terms of the tangent function) and implicit differentiation to find $y' = \frac{d}{dx} [\tan^{-1} x]$. (10, 28, 35)
 - (b) Find the length of the curve given by the equation $y = \int_0^x \sqrt{\sec^4 t 1} dt$ for $-\pi/4 \le x \le \pi/4$. (23, 27)
- 8. Do each of the following (39, 41, 43):
 - (a) Evaluate $\int_{-\infty}^{\infty} \frac{1}{r^2} dx$.
 - (b) Let $\{a_n\} = \{a_1, a_2, a_3, \ldots\}$ be a sequence of real numbers. Define " $\lim_{n \to \infty} a_n = L$."
 - (c) Use the Integral Test to show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- 9. Do each of the following (46):
 - (a) For a given x value, the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e., on what types of sets might the series converge conditionally, converge absolutely, or diverge)?
 - (b) What is the radius of convergence of $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$?
- 10. Find a MacLaurin Series for $f(x) = e^{2x} e^x$ (show your work). Show and/or explain why the series converges absolutely for all x. Use the series to calculate $\lim_{x\to 0} \frac{e^{2x} e^x}{x}$. (31, 45, 46, 47)