CALCULUS COMPREHENSIVE EXAM

Spring 2004, Prepared by Dr. Robert Gardner January 30, 2004

NAME	STUDENT NUMBER
faced parentheses indicate the number of t No calculators! You may omit one problematerial) and one problem from numbers 6	ols correctly (such as equal signs). The numbers in bold he topics covered in that problem from the Study Guide. Lem from numbers 1 through 5 (which contain Calculus 1 through 10 (which contain Calculus 2 material). Indicate and There is a three hour time limit.
1. Do each of the following:	
(a) State the definition of the limit of	of a function (that is, what does $\lim_{x\to a} f(x) = L$ mean?).
(b) Use the definition of to prove the	
2. State the Intermediate Value Theorem.	Prove that $\cos x = x$ for some x . (5)
	first and second derivative of f , find where f is increasave up/concave down, find the asymptotes of the graph of $y = f(x)$. (8, 14, 15, 16, 17)
light source and the inverse of the series relative strengths a and b are a distant	point is proportional to the product of the strength of the quare of the distance from the source. If two sources of ance c apart, at what point on the line joining them will the intensity at any point is the sum of intensities from
5. Do each of the following:	
	of Calculus to evaluate $\int_0^1 \frac{1+x}{1+x^2} dx$ and indicate with a
star (*) where you are applying the	

- 6. Do each of the following (29):
 - (a) State the definition of $\ln x$ (using integrals).
 - (b) Use the definition to prove that $\ln x^n = n \ln x$ for n rational.
- 7. Do each of the following (33, 34, 35):
 - (a) Evaluate $\lim_{y \to 0} \frac{\sin 3y}{4y}$.
 - **(b)** Evaluate $\lim_{x\to 0^+} \left(1+\frac{1}{x}\right)^x$.
 - (c) Evaluate $\int \frac{\sec^2 x \, dx}{\sqrt{1 \tan^2 x}}.$
- 8. Do each of the following (39, 41, 43):
 - (a) If f is continuous on $[a, c) \cup (c, b]$ then state the definition of $\int_a^b f(x) dx$. That is, how do you integrate over a discontinuity? You may assume the usual definition for integrals of continuous functions has been established.
 - (b) Let $\{a_n\} = \{a_1, a_2, a_3, \ldots\}$ be a sequence of real numbers. Define " $\lim_{n \to \infty} a_n = L$."
 - (c) Use the Integral Test to show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- 9. Do each of the following (46):
 - (a) For a given x value, the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e. on what types of sets might the series converge conditionally, converge absolutely, or diverge?).
 - (b) What is the radius of convergence for $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{\sqrt{n^2+3}}$ (give detailed reasons for your answer).
- **10.** Do each of the following **(44, 47)**:
 - (a) Use the MacLaurin series for e^x to find a series for $\int e^{-x^2} dx$.
 - (b) Estimate $\int_0^1 e^{-x^2} dx$ to the nearest 0.001 and explain why you know your answer has this level of accuracy.