CALCULUS COMPREHENSIVE EXAM

Fall 2021b, Prepared by Dr. Robert Gardner November 19, 2021

NAME	Start Time	End Time:
Be clear and give all details . Use	all symbols correctly (such a	s equal signs). The numbers in bold
faced parentheses indicate the num	ber of the topics covered in t	hat problem from the Study Guide.
No calculators and turn off yo	our cell phones! Use the p	paper provided and only write on
one side.		
You may omit one problem from	n numbers 1 through 5 (which	ch contain Calculus 1 material) and
one problem from numbers 6 throug	gh 10 (which contain Calculu	as 2 and multiple integral material).
Indicate which two problems you a	re omitting: and	·
1. (a) State the definition of the li	mit of a function (i.e., what	does $\lim_{x \to a} f(x) = L$ mean?).
(b) Prove that if $\lim_{x\to a} f(x) = 1$	$L \text{ and } \lim_{x \to a} g(x) = M, \text{ then } \lim_{x \to a} g(x) = M$	$\lim_{x \to a} (f(x) - g(x)) = L - M$ (1,2)
2. Do each of the following (5):		
(a) State the Intermediate Va	alue Theorem.	
(b) Prove that $\cos x = x$ for s	some x .	
3. Do each of the following (20, 2)	1, 23):	
(a) State the definition of pa for $\int_a^b f(x) dx$.	rtition, norm of a partition,	Riemann sum, and definite integral
(b) Explain the difference be	tween a definite integral and	l an indefinite integral (if any).
4. (a) State the Fundamental The	orem of Calculus (both part	s). (23)
(b) Use the Fundamental Th star (*) where you are applyi		te $\int_0^1 x \sin x dx$ and indicate with a m. (24)
5. (a) Determine $\lim_{x\to 0^+} (1-2x)^{3/x}$.	(29,37)	
(b) Find $\frac{dy}{dx}$: $\tan^{-1}(\ln y) = e^{-\frac{1}{2}}$	e^{x^2} . (8, 10, 31, 35)	
6. Do each of the following (29) :		
(a) State the definition of ln:	x (using integrals).	

(b) Use the definition from part (a) to prove that $\ln(ab) = \ln(a) + \ln(b)$.

7. Do each of the following (39, 41, 43):

(a) Evaluate
$$\int_{-\infty}^{\infty} \frac{1}{x^2} dx$$
.

(b) Use the Integral Test to show that the harmonic series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges.

8. Do each of the following (46):

(a) For a given
$$x$$
 value, the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e., on what types of sets might the series converge conditionally, converge absolutely, or diverge)?

(b) What is the radius of convergence of
$$\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$$
?

- **9.** Find a MacLaurin Series for $f(x) = e^{2x} e^x$ (show your work). Explain why the series converges absolutely for all x. Use the series to calculate $\lim_{x\to 0} \frac{e^{2x} e^x}{x}$. (31, 45, 46, 47)
- 10. Find the volume of the solid that is bounded above by the cylinder $z=x^2$ and below by the region enclosed by the parabola $y=2-x^2$ and the line y=x in the xy-plane. (49)