CALCULUS COMPREHENSIVE EXAM

Fall 2018b, Prepared by Dr. Robert Gardner November 30, 2018

NAME _	Start Time	End Time:	
Be clear and give all details . Use all symbols			
faced parentheses indicate the number of the	he topics covered is	n that problem from the S	Study Guide.
No calculators and turn off your cell \boldsymbol{p}	ohones! Use the pa	aper provided and only w	rite on one
${f side.}$ You may omit one problem from nu	imbers 1 through	5 (which contain Calculus	s 1 material)
and one problem from numbers 6 through	10 (which contain	r Calculus 2 material). In	dicate which
two problems you are omitting: an	d		
1. Do each of the following (1,2):			
(a) State the definition of the limit of	of a function (that	is, what does $\lim_{x\to a} f(x) =$	L mean?).
(b) Prove that if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} f(x) = L$			
2. Do each of the following (5):			
(a) State the Intermediate Value The	eorem.		
(b) Prove that $\cos x = x$ for some x .			
3. Do each of the following (12, 18):			
(a) State the Extreme Value Theorem	m.		
(b) Show that the largest area rectangular	ngle of a given per	cimeter is in fact a square	
4. Do each of the following (20, 21, 23) :			
(a) State the definition of partition,	norm of a partitio	on, Riemann sum, and def	finite integral
for $\int_a^b f(x) dx$.			
(b) Explain the difference between a	definite integral a	and an indefinite integral	(if any).
5. Do each of the following(23, 24, 35):			
(a) State the Fundamental Theorem	of Calculus (both	parts). (23)	
(b) Evaluate $\int_0^1 \tan^{-1}(x) dx$ (HINT:	: Use parts) and in	ndicate with a star (*) wh	ere you have
used the Fundamental Theorem of C	alculus in your cor	mputations. (24, 31)	

- **6.** Do each of the following:
 - (a) State L'Hôpital's Rule for an ∞/∞ indeterminate form.

(b) Use L'Hôpital's Rule to show
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$
. (31, 37)

- 7. Do each of the following (32, 37):
 - (a) If f is continuous on $[a, c) \cup (c, b]$ then state the definition of $\int_a^b f(x) dx$. That is, how do you integrate over a discontinuity? You may assume the usual definition for integrals of continuous functions has been established.

(b) Evaluate
$$\int_{0}^{2} \frac{1}{(x-1)^{2}} dx$$
.

- 8. Do each of the following (41,43, 45):
 - (a) State the definition of the limit of a sequence: $\lim_{n\to\infty} a_n = L$.
 - (b) State the definition of the sum of a series: $\sum_{n=1}^{\infty} a_n = S$.
 - (c) Use the integral test to show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- 9. Do each of the following (46):
 - (a) For a given x value, the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e. on what types of sets might the series converge conditionally, converge absolutely, or diverge)?

(b) For what values of
$$x$$
 does
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-5)^n}{5^n(n+5)}$$
 converge?

- 10. Do each of the following:
 - (a) Use the MacLaurin Series for e^x to find a series for $\int e^{-x^2} dx$. (30, 46)
 - (b) Estimate $\int_0^1 e^{-x^2} dx$ to the nearest 0.001 and explain why you know your answer has this level of accuracy. (44, 47)