CALCULUS COMPREHENSIVE EXAM

Fall 2016b, Prepared by Dr. Robert Gardner November 18, 2016

NA	NAME	Start Time	End Time:	
Be clear and give all details . Use all symbols correctly (such as equal signs).				
The numbers in bold faced parentheses indicate the number of the topics covered				
in that problem from the Study Guide. No calculators and turn off your cell				
phones! Use the paper provided and only write on one side. You may omit one				
_	problem from numbers 1 through 5 (which contain Calculus 1 material) and one			
problem from numbers 6 through 10 (which contain Calculus 2 material). Indicate				
wh	which two problems you are omitting	g: and		
1.	. Do each of the following (1):			
(a) State the definition of the limit of a function mean?).		nit of a function (i.e	., what does $\lim_{x \to a} f(x) = L$	
	(b) Use the definition of limit to	prove that $\lim_{x\to 8} \left(\frac{x}{2}\right)$	+5)=9.	
2.	2. Do each of the following (5):			
	(a) State the Intermediate Value	e Theorem.		
	(b) State the Mean Value Theor	rem.		
	(c) Prove that $\cos x = x$ for some	e x.		
3.	Do each of the following (10):			
	(a) What does it mean for $y = 0$. $F(x, y) = 0$?	f(x) to be a function	n <i>implicit</i> to the equation	
	(b) Find the equation of the $\lim_{x \to 0} (-1, 2)$.	ne tangent to $x^2 - x^2$	$xy + y^2 = 7$ at the point	
4.	. Do each of the following $(23, 24)$:		
	(a) State the two parts of the F	undamental Theorer	m of Calculus.	

(b) Use the Fundamental Theorem of Calculus to evaluate $\int_0^1 x \sin x \, dx$ and

indicate with a star (*) where you are applying the Fundamental Theorem.

- **5.** (a) State the definition of partition, norm of a partition, Riemann sum, and definite integral for $\int_a^b f(x) dx$. (21)
 - (b) Explain the difference between a definite integral and an indefinite integral (if any). (20, 23)
- **6.** (a) Use the definition of $y = \sin^{-1} x$ (in terms of the sine function) and implicit differentiation to find $y' = \frac{d}{dx} \left[\sin^{-1} x \right]$.
 - (b) Evaluate $\int_0^{3\sqrt{2}/4} \frac{dx}{\sqrt{9-4x^2}}$. (28, 34, 35)
- 7. Do each of the following (31, 37, 39):
 - (a) Evaluate $\lim_{x\to 0^+} \left(1+\frac{1}{x}\right)^x$.
 - (b) Evaluate $\int_{-\infty}^{\infty} \frac{1}{r^2} dx$.
- 8. Do each of the following (39, 41, 43):
 - (a) If f is continuous on $[0, \infty)$, then state the definition of $\int_0^\infty f(x) dx$. You may assume the usual definition for integrals of continuous functions on closed and bounded intervals has been established.
 - (b) Let $\{a_n\} = \{a_1, a_2, a_3, \ldots\}$ be a sequence of real numbers. Define " $\lim_{n \to \infty} a_n = L$."
 - (c) Use the Integral Test to show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- **9.** Do each of the following **(46)**:
 - (a) For a given x value, the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e., on what types of sets might the series converge conditionally, converge absolutely, or diverge)?
 - (b) What is the radius of convergence of $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$?
- 10. Compute the Taylor series for $\ln x$ centered at a=1. What is the radius of convergence? (31, 46, 47)