CALCULUS COMPREHENSIVE EXAM

Fall 2016a, Prepared by Dr. Robert Gardner September 9, 2016

NAM	AMEStart T	Time	End Time:
Be clear and give all details . Use all symbols correctly (such as equal signs). The numbers in bold faced parentheses indicate the number of the topics covered in that problem from the Study Guide. No calculators and turn off your cell phones! Use the paper provided and only write on one side. You may omit one problem from numbers 1 through 5 (which contain Calculus 1 material) and one problem from numbers 6 through 10 (which contain Calculus 2 material). Indicate which two problems you are omitting: and			
1.	(a) State the definition of the limit of a function (b) Prove that if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = L$		
2. D	 Do each of the following (3): (a) State the Sandwich Theorem (also called the base) (b) Use the fact that sin(θ) < θ < tan(θ) for WARNING: This is a two sided limit and the interpretation. 	the Squeeze The for $\theta \in (0, \pi/2)$	orem) for the limit of a function. 1) to show that $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$.
3. D	 Do each of the following (5, 13): (a) State the Intermediate Value Theorem. (b) State the Mean Value Theorem. (c) Prove that f(x) = sin(x) + 2x - 1 has exact 	ctly one real ze	ero.
4. (ε	(a) State the Fundamental Theorem of Calculus (b) Evaluate $\int_{1}^{e} \ln x dx$ (HINT: Use parts) and the Fundamental Theorem of Calculus in your	d indicate with	a star (*) where you have used
5. (a	 (a) State the definition of partition, norm of a partition of factorial facto		
6. F	Find the length of the curve $y = x^2$ for $x \in [0, 1]$.	(24, 27, 34)	

7. (a) Use the definition of $y = \sin^{-1} x$ (in terms of the sine function) and implicit differentiation to find $y' = \frac{d}{dx}[\sin^{-1} x]$. (35)

(b) Evaluate
$$\int \frac{dx}{\sqrt{5-4x-x^2}}$$
. (28, 34, 35)

- 8. Do each of the following.
 - (a) State the definition of the limit of a sequence: $\lim_{n\to\infty} a_n = L$. (41)
 - (b) State the definition of the sum of a series: $\sum_{n=1}^{\infty} a_n = S$. (41)
 - (c) Determine whether the series $\sum_{n=1}^{\infty} ne^{-2n}$ is convergent or divergent. You may use any test, but you must check the hypothesis of any test you use. (45)
- **9.** Do each of the following:
 - (a) For a given x value, the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e. on what types of sets might the series converge conditionally, converge absolutely, or diverge)? (46)
 - (b) Show that for 0 , the*p* $-series <math>\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges. (38, 43)
- 10. Compute a MacLaurin series for e^{-x^2} and $\int_0^x e^{-t^2} dt$. (47)