CALCULUS COMPREHENSIVE EXAM

Fall 2015a, Prepared by Dr. Robert Gardner September 11, 2015

NAME	Start Time	End Time:
Be clear and give all details . Use all symbol	ls correctly (such a	s equal signs) and write in complete
sentences. The numbers in bold faced parent	heses indicate the r	number of the topics covered in that
problem from the Study Guide. No calculate	tors and turn off	your cell phones! Use the paper
provided and only write on one side. Ye	ou may omit one p	oroblem from numbers 1 through 5
(which contain Calculus 1 material) and one	e problem from nu	mbers 6 through 10 (which contain
Calculus 2 material). Indicate which two pro-	blems you are omi	tting: and
1. (a) State the definition of the limit of a fe	unction (i.e., what	does $\lim_{x \to a} f(x) = L$ mean?).
(b) Prove that if $\lim_{x\to a} f(x) = L$ then for	any $k \neq 0$, $\lim_{x \to a} (kf)$	$\dot{f}(x)) = kL $ (1,2)
2. Prove that if $f(x)$ has a derivative at $x = \text{true}$? (4, 7)	c, then f is continuous	nuous at $x = c$. Is the converse also
3. Do each of the following (8, 10, 31, 35):		
(a) State the Chain Rule (with all hype	otheses).	
(b) What does it mean for $f(x)$ to be i	mplicit to the equa	ation $F(x,y) = 0$.
(c) Find $\frac{dy}{dx}$: $\tan^{-1}(\ln y) = e^{x^2}$.		
4. (a) State the Fundamental Theorem of C	alculus (both parts	s). (23)
(b) Evaluate $\int_{1}^{2} xe^{x} dx$ and indicate w	with a star (*) whe	re you have used the Fundamental
Theorem of Calculus in your computat		
5. (a) State the definition of partition, norm	of a partition, Rie	mann sum, and definite integral for
$\int_{a}^{b} f(x) dx$. (21)		
(b) Explain the difference between a de 23)	efinite integral and	an indefinite integral (if any). $(20,$

6. Do each of the following. Use all notation correctly and don't write things that don't make sense. (38, 39, 41)

(a) Evaluate
$$\int_{-\infty}^{\infty} \frac{2x \, dx}{(x^2 + 1)^2}.$$

(b) Evaluate
$$\int_{-1}^{1} \frac{1}{x^2} dx$$
.

7. (a) State L'Hôpital's Rule for an ∞/∞ indeterminate form.

(b) Use L'Hôpital's Rule to show
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$
. (31, 37)

8. (a) Let $\{a_n\} = \{a_1, a_2, a_3, \ldots\}$ be a sequence of real numbers. Define " $\lim_{n \to \infty} (a_n) = L$." (41)

(b) Let
$$\sum_{n=1}^{\infty} a_n$$
 be a series. Define partial sum of the series and define " $\left(\sum_{n=1}^{\infty} a_n\right) = L$." (41)

9. Determine whether the following series converge or diverge and explain. (43)

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$
.

(b)
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$$
.

- 10. Do each of the following (46):
 - (a) For a given x value, the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e., on what types of sets might the series converge conditionally, converge absolutely, or diverge)?
 - (b) What is the radius of convergence of $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$?