CALCULUS COMPREHENSIVE EXAM Fall 2014a, Prepared by Dr. Robert Gardner September 19, 2014

NAME ______ Start Time _____ End Time: _____ Be clear and **give all details**. Use all symbols correctly (such as equal signs). The numbers in bold faced parentheses indicate the number of the topics covered in that problem from the Study Guide. **No calculators and turn off your cell phones!** Use the paper provided and **only write on one side.** You may omit one problem from numbers 1 through 5 (which contain Calculus 1 material) and one problem from numbers 6 through 10 (which contain Calculus 2 material). Indicate which two problems you are omitting: _____ and ____.

- 1. Do each of the following (1, 2)
 - (a) State the definition of the limit of a function (i.e., what does $\lim_{x \to a} f(x) = L$ mean?).
 - (b) Prove that if $\lim_{x \to a} f(x) = L$ then $\lim_{x \to a} (kf(x)) = kL$.
- 2. Do each of the following (3):
 - (a) State the Sandwich Theorem (also called the Squeeze Theorem) for the limit of a function.

(b) Use the fact that $\sin(\theta) < \theta < \tan(\theta)$ for $\theta \in (0, \pi/2)$ to show that $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$. WARNING: This is a two sided limit and the inequality is known to hold only for $\theta \in (0, \pi/2)$.

- **3.** Do each of the following (5, 13):
 - (a) State the Intermediate Value Theorem.
 - (b) State the Mean Value Theorem.
 - (c) Prove that $f(x) = \sin(x) + 2x 1$ has exactly one real root.
- 4. Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3. The volume of a cone is given by $V = \frac{1}{3}\pi r^2 h$ and the volume of a sphere by $V = \frac{4}{3}\pi r^3$. (8, 12, 16, 18)
- 5. Do each of the following (23, 24):
 - (a) State the Fundamental Theorem of Calculus (both parts).
 - (b) Use the Fundamental Theorem of Calculus to evaluate $\int_{0}^{1} xe^{x} dx$ and indicate with a star
 - (*) where you are applying the Fundamental Theorem.

- 6. Find the length of the curve $y = x^2$ for $x \in [0, 1]$. (24, 27, 34)
- 7. Do each of the following (23, 29, 31):
 - (a) State the definition of $\ln(x)$ (using integrals).
 - (b) Use the definition from part (a) to prove that $\ln(ab) = \ln(a) + \ln(b)$.
- 8. Do each of the following: (37, 38, 39)
 - (a) Evaluate $\lim_{t \to 0^+} \left(1 + \frac{1}{t}\right)^t$. (b) Evaluate $\int_{-1}^1 \frac{1}{x^2} dx$. (39)
- 9. Do each of the following (41, 46):
 - (a) State the definition of the limit of a sequence: $\lim_{n \to \infty} a_n = L$.

might the series converge conditionally, converge absolutely, or diverge)?

(b) State the definition of the sum of a series: $\sum_{n=1}^{\infty} a_n = S$.

(c) For a given x value, the power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e. on what types of sets

10. Compute a MacLaurin series for e^{-x^2} and $\int_0^x e^{-t^2} dt$. (47)