CALCULUS COMPREHENSIVE EXAM

Spring 2019b, Prepared by Dr. Robert Gardner April 12, 2019

NAME	Start Time	End Time:
Be clear and give all details . Use al		
faced parentheses indicate the number	er of the topics covered in	that problem from the Study Guide.
No calculators and turn off you	r cell phones! Use the	paper provided and only write on
one side.		
You may omit one problem from one problem from numbers 6 through		nich contain Calculus 1 material) and rulus 2 material). Indicate which two
problems you are omitting: a	and	
1. Do each of the following (1):		
(a) State the definition of the l	imit of a function (i.e., w	hat does $\lim_{x\to a} f(x) = L$ mean?).
(b) Use the definition of limit t		
2. Do each of the following (3):		
(a) State the Sandwich Theorem	m (also called the Squeeze	e Theorem) for the limit of a function.
(b) Use the fact that $sin(\theta) < WARNING$: This is a two sided	$\theta < \tan(\theta)$ for $\theta \in (0]$ limit and the inequality in	$(0, \pi/2)$ to show that $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$. It is known to hold only for $\theta \in (0, \pi/2)$.
3. Do each of the following (29,37):		
(a) State L'Hôpital's rule.		
(b) Determine $\lim_{x\to 0^+} (1-2x)^{3/x}$		
4. Do each of the following (23, 24)	:	
(a) State the two parts of the I	Fundamental Theorem of	Calculus.
(b) Evaluate $\int_0^1 \tan^{-1}(x) dx$ (H) used the Fundamental Theorem	HINT: Use parts) and ind a of Calculus in your com	licate with a star $(*)$ where you have aputations. $(24, 31)$
5. (a) State the definition of partition $\int_a^b f(x) dx.$ (21)	n, norm of a partition, R	iemann sum, and definite integral for
(b) Explain the difference betw 23)	een a definite integral an	d an indefinite integral (if any). (20,

6. (a) Use the definition of $y = \sin^{-1} x$ (in terms of the sine function) and implicit differentiation to find $y' = \frac{d}{dx} [\sin^{-1} x]$. (35)

(b) Evaluate
$$\int \frac{dx}{\sqrt{5-4x-x^2}}$$
. (28, 34, 35)

- 7. Do each of the following (32, 37):
 - (a) If f is continuous on $[a,c) \cup (c,b]$ then state the definition of $\int_a^b f(x) dx$. That is, how do you integrate over a discontinuity? You may assume the usual definition for integrals of continuous functions has been established.
 - **(b)** Evaluate $\int_0^2 \frac{1}{(x-1)^2} dx$.
- 8. Do each of the following (41,43, 45):
 - (a) State the definition of the limit of a sequence: $\lim_{n\to\infty} a_n = L$.
 - (b) State the definition of the sum of a series: $\sum_{n=1}^{\infty} a_n = S$.
 - (c) Use the integral test to show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- 9. Do each of the following (46):
 - (a) For a given x value, the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e., on what types of sets might the series converge conditionally, converge absolutely, or diverge)?
 - (b) What is the radius of convergence of $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$?
- 10. Compute a MacLaurin series for e^{-x^2} and $\int_0^x e^{-t^2} dt$. (47)