CALCULUS COMPREHENSIVE EXAM

Spring 2018a, Prepared by Dr. Robert Gardner January 26, 2018

NAME	Start Time	End Time:
Be clear and give all details . Use all sy faced parentheses indicate the number o No calculators and turn off your cel	f the topics covered in	that problem from the Study Guide
side. You may omit one problem from and one problem from numbers 6 through two problems you are omitting:	numbers 1 through 5 gh 10 (which contain 0	(which contain Calculus 1 material
1. Do each of the following (1,2):		
(a) State the definition of the limit	it of a function (that is	s, what does $\lim_{x\to a} f(x) = L$ mean?).
(b) Prove that if $\lim_{x\to a} f(x) = L$ and		
2. Do each of the following (5):		
(a) State the Intermediate Value	Theorem.	
(b) State the Mean Value Theorem	m.	
(c) Prove that $\cos x = x$ for some	x.	
3. Do each of the following (8, 10, 31,	35):	
(a) What does it mean for $f(x)$ to	be implicit to the equ	uation $F(x,y) = 0$?
(b) State the Chain Rule (with al	l hypotheses).	
(c) Find $\frac{dy}{dx}$: $\tan^{-1}(\ln y) = e^{x^2}$.		
4. Do each of the following (20, 21, 23)	3):	
(a) State the definition of partition for $\int_a^b f(x) dx$.	n, norm of a partition	, Riemann sum, and definite integra
(b) Explain the difference between	n a definite integral an	d an indefinite integral (if any).
5. Do each of the following (23, 24, 35)):	
(a) State the Fundamental Theore	em of Calculus (both p	parts). (23)
(b) Evaluate $\int_0^1 \tan^{-1}(x) dx$ (HIN	NT: Use parts) and ind	licate with a star (*) where you have

used the Fundamental Theorem of Calculus in your computations. (24, 31)

- **6.** Do each of the following:
 - (a) State L'Hôpital's Rule for an ∞/∞ indeterminate form.

(b) Use L'Hôpital's Rule to show
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$
. (31, 37)

- 7. Do each of the following:
 - (a) If f is continuous on $[a, c) \cup (c, b]$ then state the definition of $\int_a^b f(x) dx$. That is, how do you integrate over a discontinuity? You may assume the usual definition for integrals of continuous functions has been established.

(b) Evaluate
$$\int_0^2 \frac{1}{(x-1)^2} dx$$
.

- 8. Do each of the following (41,43, 45):
 - (a) State the definition of the limit of a sequence: $\lim_{n\to\infty} a_n = L$.
 - (b) State the definition of the sum of a series: $\sum_{n=1}^{\infty} a_n = S$.
 - (c) Use the integral test to show that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- 9. Do each of the following (46):
 - (a) For a given x value, the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ may converge conditionally, converge absolutely, or diverge. Describe the possible behavior of this series (i.e. on what types of sets might the series converge conditionally, converge absolutely, or diverge)?

(b) For what values of
$$x$$
 does $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{(x-5)^n}{5^n(n+5)}$ converge?

- 10. Do each of the following:
 - (a) Use the MacLaurin Series for e^x to find a series for $\int e^{-x^2} dx$. (30, 46)
 - (b) Estimate $\int_0^1 e^{-x^2} dx$ to the nearest 0.001 and explain why you know your answer has this level of accuracy. (44, 47)