Math 1920, Calculus II

Sample Gateway Exam

Click here for the key

Instructions.  Choose the response which best answers the question. A score of 7 out of 10 is required for successful completion of MATH 1920.

  1. Which of the following is the value of the limit

     


    lim
    x® ¥ 

    xe-2x

    (a)

    -2

     

    (b)

    -1

     

    (c)

    0

     

    (d)

    1

     

    (e)

    does not exist

  2. Which of the following is the value of the limit

     


    lim
    x® 0+ 

    ( 1+x) 1/x

    (a) 0   (b) 1   (c) p   (d) e   (e) e2

  3. Which of the following is the value of the limit

     


    lim
    x® ¥ 

     

    ln( x+1)


    ln( x)

     

    (a) -2   (b) -1   (c) 0   (d) 1   (e) does not exist

  4. What is the derivative of f( x) = ln( x+2)e-x?

    (a)  

    -e-x


    x+2

        (b)  

    e-x


    x+2

    -e-xln( x+2)     (c)  e-x

    æ
    ç
    è

     

    ln(x+2)


    x+2

    ö
    ÷
    ø

        (d)  

    e-x


    x+2

        (e)  ln( 3) -xe-x-1

  5. What is the derivative of

    F( x) =

    ó
    õ

    x

    1 

    t1/2  e-t  dt

    (a)  x1/2e-x    (b)  -x1/2e-x    (c)  x1/2e-x-e-1    (d)  2x-1/2e-x    (e)  -2x-1/2e-x

  6. Evaluate òesin( x)   cos( x) dx with a substitution. What is the result?

    (a)  ecos( x) sin( x) +C    (b)  -ecos( x) sin( x) +C    (c)  esin( x) +C    (d)  ecos( x) +C    (e)  esin( x) cos2( x)

  7. Evaluate ò tan( x) dx with a substitution. What is the result?
    (a) sec2( x) +C   (b) ln| secx| +C   (c) ln| cosx| +C   (d) ln| tan(x) | +C   (e) xtan( x) +C

  8. Evaluate òxsin( 2x) dx using integration by parts. What is the result?

    (a) sin2x - xcos2x + C   (d) sin2x + xcos2x + C
    (b) sin2x + cos2x + C   (e) -sin2x + xcos2x + C
    (c) -sin2x + xcos2x + C      

  9. Evaluate òtan-1( x)  dx using integration by parts. What is the result?

     

     

    (a)  

    1


    2

    ( tan-1x) 2+C    (b)  xtan-1( x) -

    1


    2

    ln( x2+1) +C    (c)  tan-1( x) -ln( x2+1) +C   

     

     

    (d)  xtan-1( x) -

    x


    x2+1

    +C    (e)  tan-1( x) -xln( x2+1) +C

  10. Evaluate

     

    ó
    õ

     

    dx


    ( x2+1) 3/2

     

    with a trig substitution. What is the result?

    (a)  

    1


    ( x2+1) 1/2

    +C    (b)  

    1


    x2+1

    +C    (c)  


    Ö
     


    x2+1
     

    +C    (d)  

    x


    ( x2+1) 1/2

    +C    (e)  sec( q)+C