Teaching Modeling with Mosquito-Borne Disease Epidemics*

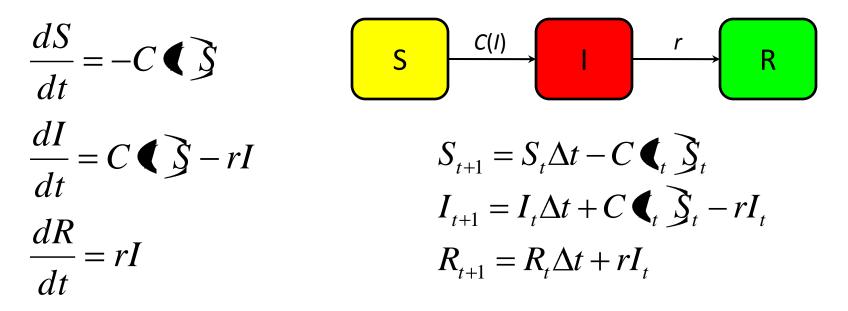
Jeff Knisley, Mathematics East Tennessee State University April 8

*Part of the Symbiosis Project funded by the Howard Hughes Medical Institute

Overall Goals

- To create a *context* which fosters the symbiosis of biology, statistics, and mathematics
 - Multiple entry points for many different students
 - Multiple activities possible and available
- To create a *context* that can be used with (and become familiar to) a wide range of students
 - Freshman use it superficially; Seniors more depth

– An "F=ma"-like alternative for the Life Sciences


SIR Epidemics

 A population of constant size N is partitioned into S = Susceptibles, I=Infecteds, R=Recovered

- C(I) = Contact rate of infection (as a function of I)
- *r* = rate of recovery
- There are more sophisticated models
 - We stay simple for pedagogical purposes
 - Simple models are still highly applicable!

SIR Epidemic Model

 SIR models are either Systems of DE's or Systems of Difference Equations

Types of SIR Epidemics

• Epidemic type often defined by how the disease is spread (Human-Human contact, Insect-borne, water borne, airborne, etc)

$$\begin{array}{c|c} S \end{array} \xrightarrow{C(I)} \\ \hline \end{array} \end{array} \xrightarrow{r} \\ \hline \end{array} \\ \hline$$

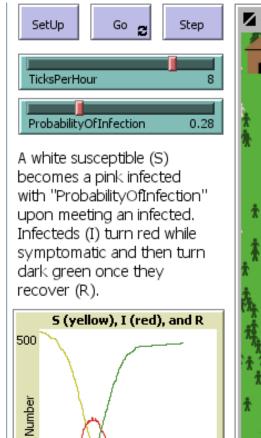
- Human-Human Contact: $C(I) = b I \leftarrow h$
- Mosquito-Human Contact: C(I) = c ←

Assuming homogenous mixing of the populations

Jeff Knisley

Which Epidemic is it??

- There have been many instances where one epidemic type has been confused for another
 - Yellow fever is Mosquito-borne (Carlos Finlay, 1889),
 - Proven to be Mosquito-borne in Cuba in **1900** (Maj. Walter Reed). Experiment cost Jesse Lazear his life.
 - Practically no cases of Yellow fever in Cuba since **1901**
 - Yellow fever officially remains a human-human transmitted disease (via poor sanitation) until **1905**.
 - Last Yellow Fever epidemic, New Orleans, 1905
 - Extensive outbreak in spite of elaborate sanitation efforts


Which Epidemic is it??

- This is still an Important Question St. Louis Encephalitis, Dengue Fever, etc.
- And is a question we can explore
 - Pedagogically: Via Simulations (Netlogo) that generate data for each epidemic type (via models)
 - Statistically: Form Hypothesis, Analyze Data, Get p-value, Infer epidemic type
 - Mathematically: Why we should not be surprised that epidemic types are often confused?

Pedagogically: The Simulations

- Simple S-I-R interactions among N agents
 - All Simulations: Recovery with a fixed rate *r* depending on how long an individual is ill (on average)
 - Human-Human: Infections with a given probability when a Susceptible meets an Infected
 - Mosquito-Human: Infections with a given probability when a Susceptible meets a Mosquito (assuming all Mosquitoes are infected)
- We simulate a "village" near a river (N = 500)

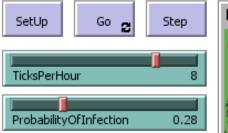
April 8, 2011

hours

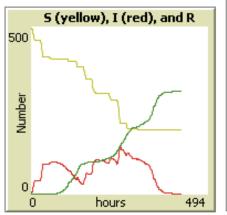
0

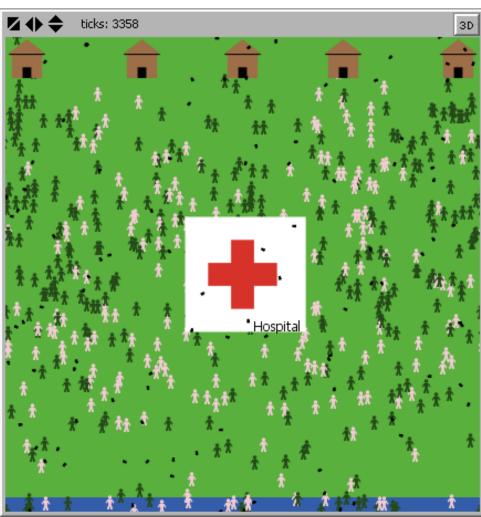
Modeling Mosquito-Borne Epidemics

775


Jeff Knisley

Pedagogically: The Simulations

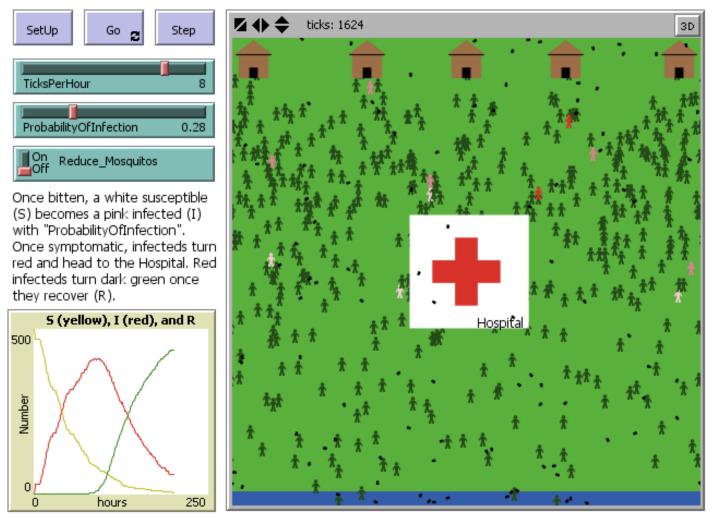

- But there is more to the story
 - People work, eat, drink water during the day
 - People sleep at night (violates homogeneity assumptions)
 - When they are sick enough, they want medical attention (hospital)
- Given a randomly-generated epidemic, can a student determine what type of epidemic it is?
 - Our "real world" is not so pristine as the models
 - But features of the models do "survive"


April 8, 2011

Human-Human Epidemic

A white susceptible (S) becomes a pink infected with "ProbabilityOfInfection" upon meeting an infected (I). Once symptomatic, infecteds turn red and head to the Hospital. Red infecteds turn dark green once they recover (R).

Modeling Mosquito-Borne Epidemics


Jeff Knisley

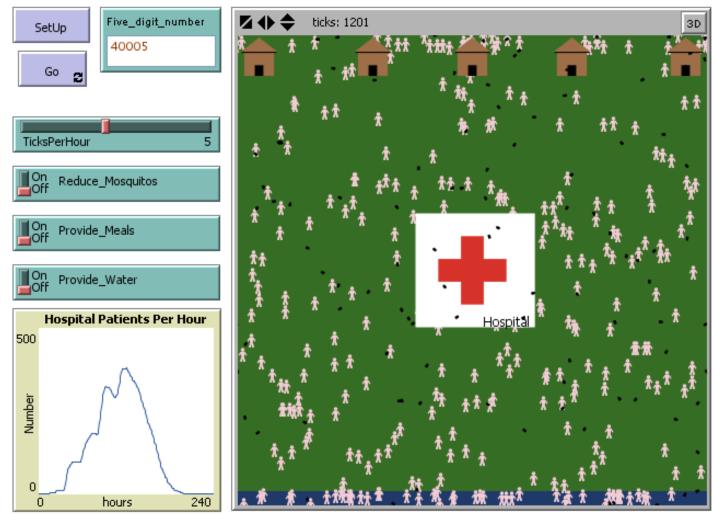
Statistically: The Data

- Mosquito-Human epidemics are likewise set in "real world" circumstances
 - Model assumptions are violated
 - But same assumptions violated for all models!
- Although the models are developed mathematically, they are compared *statistically*
 - Especially given that assumptions are often violated
 - And that epidemics of different types tend to "look alike" (later)

April 8, 2011

Mosquito-Human Epidemic

Modeling Mosquito-Borne Epidemics


Jeff Knisley

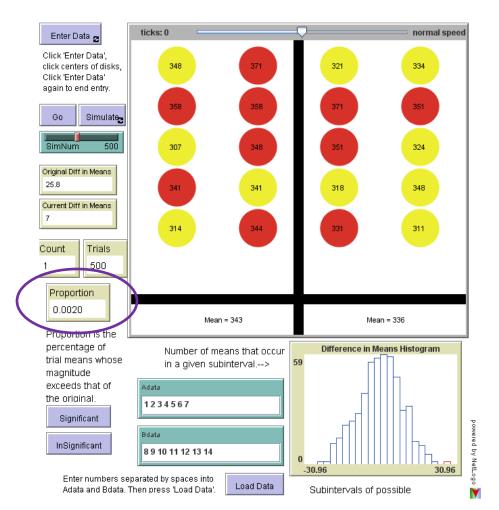
Statistically: Analyzing The Data

- EpidemicVector simulation randomly simulates one of 4 epidemic types (Human-Human, Mosquito-Human, Food Borne, Water Borne)
 - Based on a 5 digit number the student provides
 - They must determine which epidemic is generated
- Simulation mechanics:
 - People eat/drink during the day, sleep in huts at night
 - Once sufficiently ill, they go to the hospital
 - Only the patient count per hour is available for analysis

April 8, 2011

Epidemic Simulations: 4 possible Methods of Transmission

Modeling Mosquito-Borne Epidemics

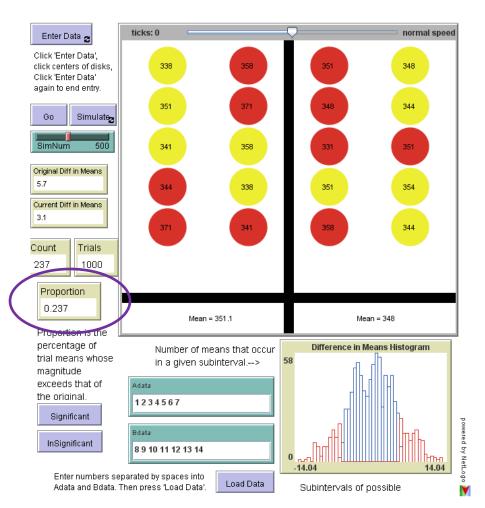

Jeff Knisley

Statistically: Analyzing The Data

- Students can apply any of 3 interventions
 - Reduce the mosquito population
 - Provide untainted food to some of the population
 - Provide sterile water to some of the population
- Question: Which intervention reduces severity of the epidemic?
 - Simple approach: collect "max patient counts" in each simulation
 - Test for significance of difference between means of Experimental (with intervention) and Control
 - We have them do so with the randomization test

April 8, 2011

Jeff Knisley



The Randomization Test

Result of Simulation with the data associated with the button **Significant**

April 8, 2011

Jeff Knisley

The Randomization Test

Result of Simulation with the data associated with the button **InSignificant**

Mathematically: Linearization

 Mosquito-Human model is the *linearization* of the Human-Human model (in simple forms)

Human
$$\frac{dS}{dt} = -bIS$$
 $c = b \langle \!\!\! \langle \! 0 \rangle + S_0 \rangle$ $\frac{dS}{dt} = -cS$ Mosquito
Human $\frac{dI}{dt} = bIS - rI$ $\frac{dI}{dt} = cS - rI$
 $\frac{dR}{dt} = rI$ $\frac{dR}{dt} = rI$

Mathematically: Linearization

- Linearization is 'valid' as long as R(t) is small
 - Thus, epidemic types often look "the same" for relatively long periods of time
 - Long term: Linearization (Mosquito) eventually infects everyone in the population (but may take "arbitarily long" to do so)
- Deep Mathematical Question: On what interval is a linearization a 'valid' approximation?

Goal: Contexts that become "familiar" and can be used in many situations

- Freshman, General Majors: Simulation generates data for statistical testing
- Sophomore, Math Majors: Linear difference equation as both (a) programming assignment and (b) excuse to study sequences and series
- Junior/Senior: Systems of DE's, Linearization of DE's, statistical modeling, time series analysis

Thank you!

Website: <u>http://math.etsu.edu/Symbiosis/epidemics</u>

- Data available from command line in Netlogo
- Netlogo interface with R can be used with Desktop Version of Netlogo (not enabled with applets)